Secular determinants of random unitary matrices
نویسندگان
چکیده
We consider the characteristic polynomials of random unitary matrices U drawn from various circular ensembles. In particular, the statistics of the coefficients of these polynomials are studied. The variances of these “secular coefficients” are given explicitly for arbitrary dimension and continued analytically to arbitrary values of the level repulsion exponent β. The latter secular coefficients are related to the traces of powers of U by Newton’s wellknown formulae. While the traces tend to have Gaussian distributions and to be statistically independent among one another in the limit as the matrix dimension grows large, the secular coefficients exhibit strong mutual correlations due to Newton’s mixing of traces to coefficients. These results might become relevant for current efforts at combining semiclassics and randommatrix theory in quantum treatments of classically chaotic dynamics. PACS numbers: 05.45.+b, 02.50.Sk, 05.40.+j Short title: Secular determinants of random unitary matrices February 5, 2008
منابع مشابه
Random Matrices, Magic Squares and Matching Polynomials
Characteristic polynomials of random unitary matrices have been intensively studied in recent years: by number theorists in connection with Riemann zetafunction, and by theoretical physicists in connection with Quantum Chaos. In particular, Haake and collaborators have computed the variance of the coefficients of these polynomials and raised the question of computing the higher moments. The ans...
متن کاملDynamical Correlations for Circular Ensembles of Random Matrices
Circular Brownian motion models of random matrices were introduced by Dyson and describe the parametric eigenparameter correlations of unitary random matrices. For symmetric unitary, self-dual quaternion unitary and an analogue of antisymmetric hermitian matrix initial conditions, Brownian dynamics toward the unitary symmetry is analyzed. The dynamical correlation functions of arbitrary number ...
متن کاملPowers of large random unitary matrices and Toeplitz determinants
We study the limiting behavior of TrUk(n), where U is a n × n random unitary matrix and k(n) is natural number that may vary with n in an arbitrary way. Our analysis is based on the connection with Toeplitz determinants. The central observation of this paper is a strong Szegö limit theorem for Toeplitz determinants associated to symbols depending on n in a particular way. As a consequence to th...
متن کاملTensor Products of Random Unitary Matrices
Tensor products of M random unitary matrices of size N from the circular unitary ensemble are investigated. We show that the spectral statistics of the tensor product of random matrices becomes Poissonian if M = 2, N become large or M become large and N = 2. 2010 Mathematics Subject Classification. 15B52.
متن کاملEigenvalue Separation in Some Random Matrix Models
The eigenvalue density for members of the Gaussian orthogonal and unitary ensembles follows the Wigner semi-circle law. If the Gaussian entries are all shifted by a constant amount c/(2N)1/2, where N is the size of the matrix, in the large N limit a single eigenvalue will separate from the support of the Wigner semi-circle provided c > 1. In this study, using an asymptotic analysis of the secul...
متن کامل